YES 0.761 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Main
  ((product :: [Int ->  Int) :: [Int ->  Int)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((product :: [Int ->  Int) :: [Int ->  Int)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ NumRed

mainModule Main
  ((product :: [Int ->  Int) :: [Int ->  Int)

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
HASKELL
              ↳ Narrow

mainModule Main
  (product :: [Int ->  Int)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(vx800), Succ(vx30000)) → new_primPlusNat(vx800, vx30000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(vx400), Succ(vx3000)) → new_primMulNat(vx400, Succ(vx3000))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_enforceWHNF0(Neg(vx40), Pos(vx300), vx5, vx31) → new_enforceWHNF1(vx40, vx300, vx31)
new_enforceWHNF(vx40, vx300, :(vx310, vx311)) → new_enforceWHNF0(Pos(new_primMulNat0(vx40, vx300)), vx310, Pos(new_primMulNat0(vx40, vx300)), vx311)
new_enforceWHNF0(Pos(vx40), Pos(vx300), vx5, :(vx310, vx311)) → new_enforceWHNF0(Pos(new_primMulNat0(vx40, vx300)), vx310, Pos(new_primMulNat0(vx40, vx300)), vx311)
new_enforceWHNF0(Pos(vx40), Neg(vx300), vx5, :(vx310, vx311)) → new_seq(new_primMulNat0(vx40, vx300), vx310, new_primMulNat0(vx40, vx300), vx311)
new_enforceWHNF1(vx40, vx300, :(vx310, vx311)) → new_seq(new_primMulNat0(vx40, vx300), vx310, new_primMulNat0(vx40, vx300), vx311)
new_enforceWHNF0(Neg(vx40), Neg(vx300), vx5, vx31) → new_enforceWHNF(vx40, vx300, vx31)
new_seq(vx6, vx310, vx7, vx311) → new_enforceWHNF0(Neg(vx6), vx310, Neg(vx7), vx311)

The TRS R consists of the following rules:

new_primMulNat0(Zero, Zero) → Zero
new_primMulNat0(Succ(vx400), Zero) → Zero
new_primMulNat0(Zero, Succ(vx3000)) → Zero
new_primPlusNat0(Zero, vx3000) → Succ(vx3000)
new_primPlusNat0(Succ(vx80), vx3000) → Succ(Succ(new_primPlusNat1(vx80, vx3000)))
new_primPlusNat1(Succ(vx800), Zero) → Succ(vx800)
new_primPlusNat1(Zero, Succ(vx30000)) → Succ(vx30000)
new_primMulNat0(Succ(vx400), Succ(vx3000)) → new_primPlusNat0(new_primMulNat0(vx400, Succ(vx3000)), vx3000)
new_primPlusNat1(Succ(vx800), Succ(vx30000)) → Succ(Succ(new_primPlusNat1(vx800, vx30000)))
new_primPlusNat1(Zero, Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat1(Succ(x0), Succ(x1))
new_primPlusNat1(Succ(x0), Zero)
new_primMulNat0(Zero, Succ(x0))
new_primPlusNat0(Succ(x0), x1)
new_primMulNat0(Succ(x0), Zero)
new_primPlusNat1(Zero, Succ(x0))
new_primPlusNat1(Zero, Zero)
new_primPlusNat0(Zero, x0)
new_primMulNat0(Succ(x0), Succ(x1))
new_primMulNat0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: